littleBits

Lesson Plan Sample

TUG OF WAR

Lesson content is not final and subject to change

littleBits

Hello!

Thanks for your interest in the littleBits Code Kit! This kit comes with lessons, instructions & resources for 100+
activities, including 10 lessons and 4 main inventions. We wanted to give you a sneak peek at these support
materials, so you can picture what your lessons may look like. We're still testing these materials before officially
launching the kit in June, so they may change slightly between now and then.

The Code Kit experience was designed with educators and will be broken down into a series of lessons, which
will be supported by guided invention builds and concept tutorials in the Code App (covering loops, variables,

logic and functions):

LESSON 1: ‘Hello World'’

LESSON 2: ‘Ultimate Shootout’

LESSON 3: ‘Hot Potato...of Doom!’

LESSON 4: ‘Rockstar Guitar’

LESSON 5: ‘Tug of War’

LESSON 6: Boss Level Challenge (Open prompts)
Plus Extension Lessons!

The ‘Tug of War’ sample on the next page is an intermediate to advanced lesson, meant to be tackled by
students and teachers who have completed lessons 1-4, or have a foundation in the above coding concepts.
Please note that this is a working DRAFT; content and structure are likely to change.

Each lesson plan will be accessible and customizable on google docs, with links to studentfacing presentation
slides, invention templates, concept videos and student support tools. A Code Kit educator site will have links to

all of these resources.

For launch, a unit plan will provide pacing support for those that may want to dip their toes info a 1 week
coding introduction vs. a full 8-10 week curriculum.

We aim to provide a hyper engaging, hands on introduction to coding and design engineering - that is also
easy to teach and implement.

We can't wait to see what you and your students createl!

littleBits

LITTLEBITS LESSON

Tug of War

TEACHER NAME: Adam Driggers, MS839
CLASS/PERIOD: Grade 6,

LESSON OVERVIEW/ESSENTIAL QUESTION:

LESSON TAGS

Students create and remix the Tug of War game to explore how functions are used to structure code.

Essential Question: When and why are functions needed?

% GRADE LEVEL

Middle School to High
School

PREREQUISITE
KNOWLEDGE

Loops

Variables

Functions

“Ultimate Shootout”
“Rock Star Guitar”
“Hot Potato of Doom”

DESCRIPTION

SUBJECTS DIFFICULTY DURATION

Math Advanced 4, 50 minute class
Science periods
Engineering

é/ LESSON OUTLINE

LESSON OBJECTIVES

littlebits.cc/lessons

INTRO: Warm up exercise and tutorials: introduction to functions
CREATE: Students build the ‘Tug of War’ invention in teams of 2-3 students

PLAY: Each group tests out their invention. Students explore how their
invention and circuit works, plus the coding concepts behind it. Students
discuss how the circuit and code work.

REMIX: Students will customize and enhance their inventions. Use the
Challenge Matrix to direct students to remixes of various difficulty.

SHARE: Do an ‘Arcade Walk’ of their remixes. Students provide peer to peer
feedback then self-assess their own work using their invention logs.

-Understand the purpose of functions and how they are used in a program.
-Organize and structure code using functions.

http://littlebits.cc/lessons

littleBits

-Build and test the solution to challenge problems.

ASSESSMENT The invention log checklist (invention log pg 18) can be used to assess your

STRATEGIES students’ understanding of the invention cycle, use of the invention log and
ability to attain the objectives of the lesson. For formative assessment while
students work, you can use this checklist to ask questions about their current
task and ensure that they are on the right track. The checklist can also be used
as a self-assessment tool by students as they move from phase to phase. For
summative assessment, you can use this checklist to review students’ entries
into their invention log and assess their understanding of the challenge and the
invention process as a whole.

STANDARDS

3-5-ETS1-3
@ Plan and carry out fair tests in which variables are controlled and failure points are considered to identify
aspects of a model or prototype that can be improved.

MS-ETS1-3

Analyze data from tests to determine similarities and differences among several design solutions to
identify the best characteristics of each that can be combined into a new solution to better meet the
criteria for success.

CSTA 1B-A-5-5
Use mathematical operations to change a value stored in a variable.

CSTA 2-A-5-7
Create variables that represent different types of data and manipulate their values

CSTA 2-A-7-4
Interpret the flow of execution of algorithms and predict their outcomes.

CSTA 2-A-4-8
Define and use procedures that hide the complexity of a task and can be reused to solve similar tasks.

VOCABULARY

Function
Variable
Loops
Encapsulate
Procedure

SUPPLIES

E| I& BITS ACCESSORIES OTHER MATERIALS TOOLS USED

Code Kit (1 kit per group Laptop with Code app Scissors
of 2-3 students) downloaded

littlebits.cc/lessons

http://littlebits.cc/lessons

littleBits

RESOURCES

ATTACHMENTS Remix Challenge Matrix for Remix
Rubber Duck Card for Play Discussion
Comment Coins for Share

TIPS & TRICKS Headphones are recommended if adding the speaker to an invention.

PACING DAY 1. CODE TUTORIALS
Prep + setup
Intro (10 mins)
Warm up - code tutorials (20 mins)
Share (15 mins)
Close (5 mins)

DAY 2: CREATE AND PLAY
Prep + setup

Intro (5 mins)

Create (20 mins)

Play (20 mins)
Debrief/Close (5 mins)

DAY 3: REMIX
Prep + setup
Intro (5 mins)
Remix (30 mins)
Share (10 mins)
Close (5 mins)

DAY 4: SHARE

Prep + setup

Intro (5 mins)

Remix Iterations (20 min)
Share (20 mins)

Close (5 mins)

INSTRUCTIONAL STEPS

STEP 1: SETUP
Duration:

This lesson can be done individually or in small groups (2-3 students).

Each group will need at least one Code Kit, computer, plus one invention log and assessment checklist per
student.

Set up a central location in the classroom for assorted materials and tools.

littlebits.cc/lessons

https://docs.google.com/document/d/19YySExfQfY8HT2p5lPdhbkAet7Owe1aB634-atjknJA/edit?usp=sharing
http://littlebits.cc/lessons
https://docs.google.com/document/d/1FvCdetSRKwqbSecJ1U7ajOGw8EOtLii2naG5dDKeKI0/edit?usp=sharing
https://docs.google.com/document/d/18thJ7AyaJgBhUdYW-jIFOgTygkLcvkkomjDo28EpL-o/edit?usp=sharing

littleBits

littlebits.cc/lessons

During the create phase, students will construct their first prototypes according to instructions in the Code
App. You may want to construct your own example prototype before the lesson begins. Seeing a working
model of what they are building can help the students understand the goal of their create phase and will
allow you to quickly demonstrate it working in the Play phase.

If you'd like to provide your students with the templates for the soccer goal, be sure to print copies
beforehand

NOTES

[notes]

STEP 2: INTRODUCE
Duration: 50 minutes

Review your community code and littleBits basics.
Open up your ‘Tug of War’ student presentation (link) and review the goals for the day.
Building Background Knowledge (10 minutes)

Break students in teams of 2 or 3
Use this activity to identify prior knowledge and identify misconceptions regarding functions.

Round 1

Give each group a poster paper or blank sheet of paper. Have them write “Function” in the middle of the
page and draw a small circle around the word. Ask students to write anything and everything they know
about functions.

Note: This activity could also be done digitally. It works well to use a 3 column chart for each round.

Round 2
Have students draw a circle around the outside of their responses from round 1. Watch the functions
coding concept video (link). Have students record any new information regarding functions to the chart.

Round 3

Students draw another circle around their round 2 responses. For round 3, students will work on one of the
code tutorials for function in the Code App (link). While they are working on the tutorials, they should add
any new understandings or ideas about functions to their charts.

Code Tutorials (30 mins)

Assign each of group to a computer workstation. Have students open up the littleBits Code App and click
on the “functions” challenge. Students will follow the tutorial and add any new information about functions
to their posters.

For remediation/support, hand out or provide link to the ‘debugging checklist’ (link)

If students are having difficulties with the functions tutorial, they may need to go back and refresh on the
other Code Kit tutorials.

Discuss: Give One, Get One, Move On (10 mins)

http://littlebits.cc/lessons

littleBits

littlebits.cc/lessons

Use this procedure to spread learnings and to see what “stuck” with participants. You can structure it with
movement, or make it a silent, written experience.

Procedure

1. Ask students to individually write down 3-5 key learnings or important ideas about functions.
Have people write each idea on a different index card or sticky-note to give away to his or her
partners. Students can refer to their circle chart for ideas.

2. Invite the students to get up and mingle with each other.

After about 30 seconds, call out “GIVE ONE to a partner.”

4. Participants form pairs and each “gives” one of his or her key learnings or important ideas about
the topic to the other, so each person “gives one” and “gets one.” Time may range from 1-3
minutes.

5. Call out “"MOVE ON” and students mingle again.

6. Repeat the sharing for as many ideas as people have to share.

w

To close, have each student share their favorite new idea or concept from the day. Collect the notes to see
what the students took away from this lesson.

NOTES

If students have a strong grasp of loops, variables, and functions, you may want to skip the tutorials and
start by creating the Tug of War game.

STEP 3: CREATE
Duration: 20 minutes

Play the ‘Tug of War’ video to the class (link to presentation).

If using the Invention Log, define criteria for success and constraints that are appropriate for your
students. For example, your criteria for success could be that the circuit must contain power, input and
output.

At each group workstation, ask students to open up the littleBits Code app and click on the ‘Tug of War’
invention. Students will watch the instructional video in their groups to create and code their invention.

Encourage students to reference the Bit Index (pg 7-27 in their invention guides) if they get stuck or want
to learn more about a particular bit or accessory. For younger students, you may want to pause the class
after each step to troubleshoot any common problems, as well as share successful build strategies
amongst the groups.

NOTES

You may prefer to have a digital copy of your Invention Log (link). This will enable students to add
screenshots, pics and videos into their documentation.

View classroom management tips (link) for support with team work and troubleshooting.

http://littlebits.cc/lessons

littleBits

littlebits.cc/lessons

STEP 4: PLAY
Duration: 10 minutes of play + 10 minutes for discussion

As you move through the play prompts, be sure to have students record their PLAY process and
reflections in the Invention Log (starting with “how did you testing go?”).

How did your testing go?: Once the inventions have been constructed, students should test their
prototypes to make sure it works and to explore the circuit functionality.

Students should test the tug of war game. If the circuit doesn’t work:

-check the circuit; make sure there are blue powersnaps on one end on the button
-make sure the button is pressed all the way down

-make sure your power bit is switched on and the cable connections are secure.
-check for low batteries

Rubber Ducking Discussion Protocol

Rubber Ducking is a debugging practice where a programmer will articulate a problem aloud, historically to
a yellow rubber duck. The act of speaking the problem out loud can often lead the programmer to a
solution. After students have had a chance to play with the circuit, ask them to “rubber duck” the circuit
and the program to their partner.

Setup (2 minutes
- If students are working in pairs have them decide who will discuss the circuit and who will
discuss the program. If working in small groups have students take turns or work together to
discuss each part.
- Allow students to use the rubber duck card visual to identify who is speaking and who is listening.

Round 1 (3 minutes)
- One student describes how the circuit works to their partner/group
- Have the prompts displayed on the board or on a handout to help students who are struggling to
get started.
- Circuit Prompts:
- “Walk through the circuit from beginning to end, describing what is happening at each
bit.”
- “Describe the inputs”
- “Describe what happens when the input is triggered”
- “Describe the outputs”
- “Describe what the Code Bit is doing”

Round 2 (3 minutes)
- One student describes how the code works to their partner/group
- Have the prompts displayed on the board or on a handout to help students who are struggling to
get started.
- Code Prompts:
- “Walk through the code from beginning to end, describing what is happening at each
block.”
- "Describe the variables”
- “Describe how the loops are working”
- “Describe what happens when an input is triggered.”
- "Describe what the “move box” function is doing”

Debrief (2 minutes)

http://littlebits.cc/lessons
https://docs.google.com/document/d/18thJ7AyaJgBhUdYW-jIFOgTygkLcvkkomjDo28EpL-o/edit?usp=sharing

littleBits

littlebits.cc/lessons

- Have students share one interesting thought they heard when they were the rubber duck.
- Sentence Starter: “When | was the rubber duck | heard...”

Be sure to have students record their notes and processes in the Invention Log.

NOTES

For support during the play phase, reference the invention advisor tips

STEP 5: REMIX
Duration: 30 minutes

There are many different entry points for remixing Tug of War, from swapping out some bits, changing
some code, or completely changing the context of the game.

Use the Challenge Matrix to allow students to self pace through the remix phase. You can either designate

a starting challenge or have students choose their challenge level.

Tug of War: Remix Challenges

Change the Circuit

Other Inputs

Swap out the input bits to change
the game play. How can changing
the inputs change how the game is
played?

Change the Code

Title Screen

Add a title screen, scrolling
message, or animation to the start
of the game as an introduction.

Change the Code

Keeping Score

Change the code to keep score of
wins. Display the score at the end of
each game.

Use functions to structure your
code.

Create a "GAME OVER" function.
Move the end of game blocks into
this function.

Skills Needed
Functions
Lagic

Imagine a student who has a visual
impairment, this game really
wouldn't work for them.

How could you change the game to
make is playable by this student?

Skills Needed
“Functions
Logic
input/Output

Skills Needed Skills Meeded
Loops Loops
F -Timing Variables
Skills Needed o
Anput/Cutput Logic
Change the Code Change the Context Change the Comntext
Code Cleanup! A Game for Everyone Let's Play Together

Remix the code to create a game
where both players work together to
achieve a goal.

Before you get started, plan out your
program. Where can you use
functions to improve the structure of
your code?

Suills Meaded
Functions
“Logic
Anput/Qutput

When students feel like they have completed each remix challenge have them submit their solutions either

digitally or by having you look over their code. Giving a check or stamp in the box of the completed
challenge can act as extra motivation for students to stay focused on remixing. You may want to collect
the Challenge Matrix for each group as formative assessment data.

Below is a description and possible solution for each challenge level:

Change The Circuit

http://littlebits.cc/lessons
https://docs.google.com/document/d/1FvCdetSRKwqbSecJ1U7ajOGw8EOtLii2naG5dDKeKI0/edit?usp=sharing

littleBits

Other Inputs
Prompt:

Swap out the input bits to change the game play. How can changing the inputs change how the game is
played?

Students will discover that the buttons can be replaced with other input bits. A possible solution is to
change one button to the Sound Trigger (i20) bit and the other button to the Pressure Sensor (i11) bit.

Many different inputs could work, so if you have any other bits around get them out and let kids
experiment.

Change the Code
Title Screen

Prompt:
Add a title screen, scrolling message, or animation to the start of the game as an introduction.

Lets add a title screen to the game using scrolling text.

Possible Solution

REPEAT ﬂ TIMES
DO | CHANGE TEXT COLOR TO _J

sen scrowunc Text o ERPTECIR o CLE
CHANGE TEXT COLOR TO _]

L1 seconds

=

?) DO FOREVER

-13) box location - (=3 0
© | gomeboard - | ()

In the example above, the scrolling text will show the title of the game for 10 seconds before the game
starts.

Keeping Score

littlebits.cc/lessons

http://littlebits.cc/lessons

littleBits

littlebits.cc/lessons

Prompt:
Change the code to keep score of wins. Display the score at the end of each game.

Possible Solution

At the start of the game, set the variable for orange and green to 0

When there is a win, update the score of the winning player.
R o focaion - [>=T0 5

*/ SEND IMAGE

(2) SEND IMAGE 10 IS

seconds

What good is keeping score if we don't ever show the user? Let’s display the score at the end of the game.

http://littlebits.cc/lessons

littleBits

(7) f:T seconds
f
r-.
S our
—
.f‘ 2 seconds
D A & ol OUT] ~
(7 \’I 2 seconds
=D 1o
| 2 seconds

D A [o}l OUT] ~

Code Cleanup

Prompt:

Use functions to structure your code. Create a “GAME OVER” function. Move the end of game blocks into
this function.

One of the benefits of using functions is that they can be used to make the code more easily read by other
coders. Functions can separate code into smaller, more understandable chunks. This is often called
“encapsulation.” Try creating a “Game Over” function that separates the end code from the rest of the
loop.

B o Game Over

Creates a function with no output.

() SEND IMAGE (-} CUTI ~

() SEND IMAGE W OUTI ~

seconds.

littlebits.cc/lessons 10

http://littlebits.cc/lessons

littleBits

Change the Context
This level of remix asks students to change both the circuits and the code.

A Game for Everyone
Prompt:

Imagine a student who has a visual impairment, this game really wouldn’t work for them. How could you
change the game to make is playable by this student?

Possible Solution
Example Below uses the speaker as an output, wrapped in a function.

po

11 bon locaiion — MM 0]
| gomeboord - |-

2) SEND IMAGE § LY ouri - |
) RePEAT [TYIED

R o ocoion - =T 5

SEND IMAGE

B s iocotion - f<-T 5

L) SEND IMAGE

SEND TONE 70 IS ror TRy ms

Let's Play Together
Prompt:
Remix the code to create a game where both players work together to achieve a goal. Before you get started,

plan out your program. Where can you use functions to improve the structure of your code?

Possible Solution

The example below is a game called Newton's Apple. The players must use the buttons to move the
basket (white pixel) to catch the apple (red pixel). The goal is to catch 20 apples in 1T minute.

littlebits.cc/lessons

L box locotion - (<=1 5 [MUo I o ox locotion - >~ 5 |

move box

— o
L boxlocation - 22T 0

SEND IMAGE (FEIOREI MOVED EFIIED BY of[SSURS PiXeLTO (IIED

L box location - _

ey
SEND IMAGE (EFPRSSTE MOVED [[E3 BY (21 r— \mn PIXELTO [EVED
! psdokat

300 millseconds -

ploy sound

[box location - f==T"" 5

[box location - | |
[box ocation - | m;ﬁ

TR e ST
[boxlocaion - == 10 2

[box locorion - [==T0"1 |

SEND TONE LT ounz - I 250 'S

L oo ocoion |

SEND TONE _ L CYourz - LU 250 UH
e ——
[box ocotion - |

i

[box location - =210 2

SEND TONE _ AT ourz - BT 250
[boxlocoion ==L 5 |

SEND TONE _ TO GFED For ELl Ms
[boxlocaion - [==T0 4

[boxlocation - =210 5

11

http://littlebits.cc/lessons

littleBits

littlebits.cc/lessons

DO FOREVER
(7] move basket

- box locafion - = (14

SEND IMAGE

ELSE b -
SEND IMAGE SETEEITO | picKk RANDOM FROM ﬂ 10

sen offillf] PixeLarx: I8 box location -~ |IRE ﬂ 10

—
]

' aoo offf] To CTIED
_aoo offf

NOTES

[notes]

STEP 6: SHARE
Duration: 10 minutes

Have students spend a few minutes documenting (video/images) their invention and save any
files/screenshots in their invention log (or the file management system of your choice).

Arcade Walk

Set-up a “Arcade Walk” of the students remixes. Remind the students of norms for giving feedback—be
kind, be specific, and be helpful. Ask students to look specifically at where and when functions were used
in the remixed programs.

Setup (2 minutes)
- Have students place their remixed project and their computer with the code open next to each
other.
- Students give feedback on the “comment coins,” give each student a few to start and have a pile
in case they need more.
- Go over feedback types and have a slide up during the “Arcade Walk.”

12

http://littlebits.cc/lessons

littleBits

- Warm Feedback: Something that was done well or is really successful.
- Cool Feedback: Something that needs improvement. Something that was not so
successful. A bug. A confusion.
- Remind students that the purpose is to get and give quality feedback.

Gallery Walk (3 minutes)
- Have students experience each other's projects.

- Students give Warm and Cool feedback using the coins.

Discussion / Reflection (5 minutes)
- Ask groups to review comments and choose one piece of feedback to respond to.
- Do ago around where each group reads the feedback and then gives a response.

Have students record feedback in their Invention Logs.

STEP 7: CLOSE
Duration:5 minutes

Have students complete an “exit slip” to determine their understanding of functions. This could be

Sample prompts:
- How are functions used?
- Give an example of when to use a function

Collect the feedback forms from each group.

If you are assessing student work, the self-assessment checklist may be handed and filed out (link).

Printable/editable certificates can be used to celebrate your student’s achievements (link)

recorded in a notebook, an online submission, or a slip of paper that students turn in at the end of class.

Students should take apart their inventions and put away the Bits according to the diagram on the back of

the Bit Index. Students should clean up their workspace and close out their app.

STEP 8: EXTENSIONS

ﬂ:[', Duration: [insert time here |

[taking it further —-> coming soon!]

littlebits.cc/lessons

13

http://littlebits.cc/lessons

