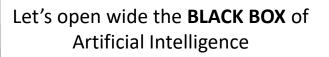


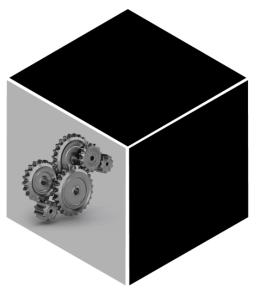
alphai

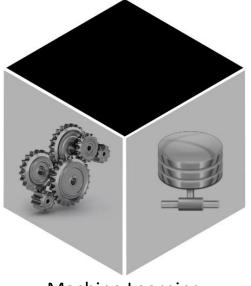
A learning robot to open the black box of artificial Intelligence

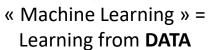
WHY teaching AI for all?

The future of **WORK**

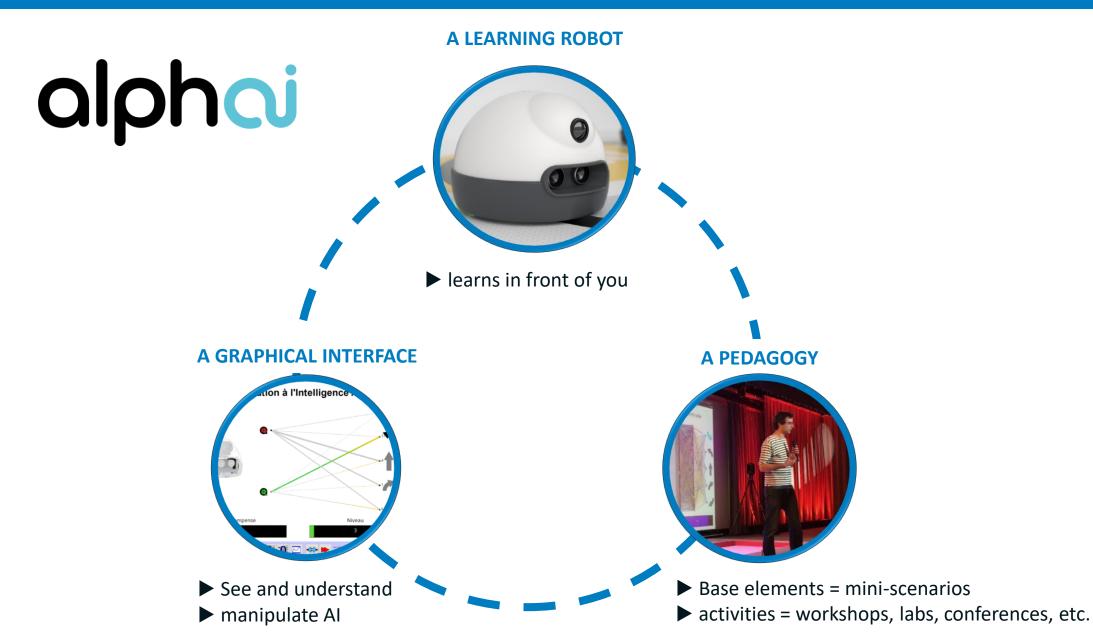



The future of **HUMANKIND**


The future of **SCHOOL**

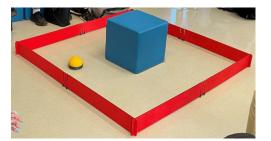

WHAT to teach about AI? (elementary, secondary, higher education)

Programmation = INSTRUCTIONS



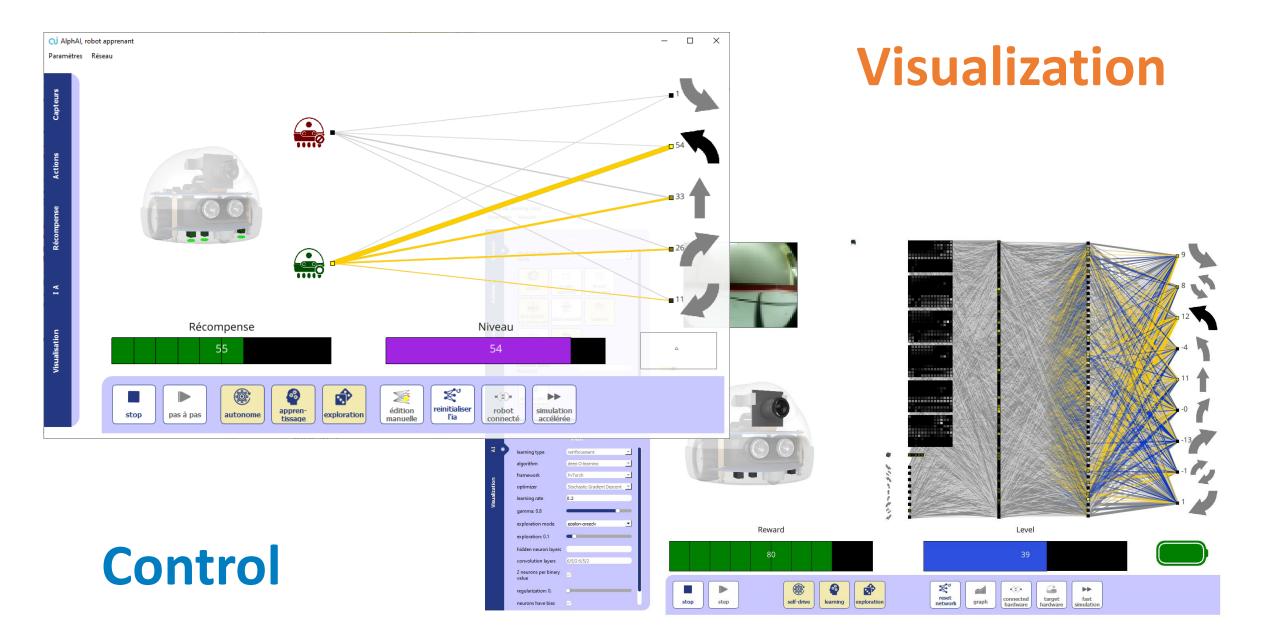
But how does it work? = ALGORITHMS

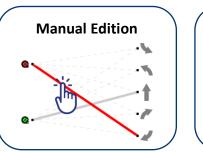
HOW to talk about AI algorithms in a concrete way?

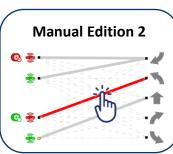


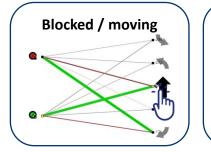
The robot and the arena

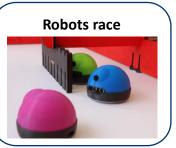
Modular arena

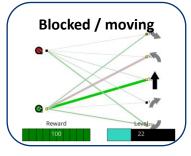





The graphical user interface


The basics of our activities : the learning **mini-scenario**


Discovery of neural networks



Supervised Learning

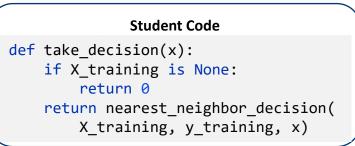
Software installation Start the robot

Image recognition pervised learning

Robot race upervised Learning



Intruder detection


Up to your imagination!

Student Code!

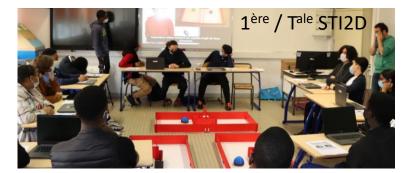
Reinforcement Learning

Activities : Labs, workshops, conferences

PEDAGOGICAL SHEETS, VIDEOS, EXERCISES...

Designed by teachers in accordance with the French National Education programs and tested in the classrooms.

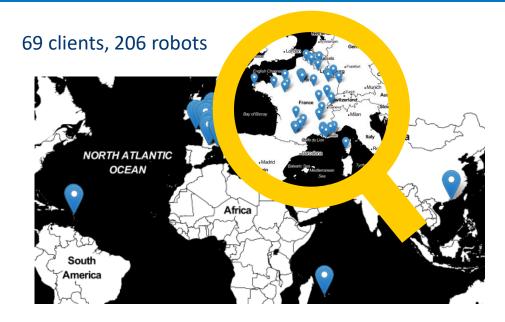
Documentation	Activities	Software
Primary school Reinforcement learning work	shop	
Robots race		
Secondary school		
Lab - Reinforcement learning		
Lab - KNN Algorithm		



Objet	N°	Désignation Séquence	Disponible (ou	Description		Tiers-li
			date			(Fab-l
			prévisionnelle)			etc.)
<u>a</u>	1	Introduction à l'IA	septembre 2021	Initialisation à l'IA via la présentation des deux principaux modes	1-2h	
Global				d'apprentissage		
U				Supervisé : Reconnaissance d'images		X
				Renforcement : Navigation bloqué/en mouvement		
				Mise en évidence des différences/similarités entre les deux		
	2	TP suivi de ligne	janvier 2022	contrôle classique vs. App. Supervisé ou par Renforcement	2-3h	
	3	TP Optimisation d'une	mars 2022	calcul mécanique classique vs. IA (par ex. tour de piste, ou freinage)	2-3h	
	trajectoire					
	4	TP AlphAI "Tortue"	novembre 2021	TP de programmation débutant : faire avancer le robot AlphAI avec	2 x 2h	
ho	4	TP Alphai Tortue	novembre 2021	des instructions simples, utiliser if et boucles for pour prendre des	z x zn (aisé de	
e Programmati é on Python				décisions en fonction de l'état des capteurs et réaliser un parcours	(alse de créer + de	
				simple.	séances)	
	-		février 2022	Programmation d'une interface permettant de téléguider le robot		
	5	TP interface de téléguidage			2-3h	
Apprentissage Supervisé	6	Course de robot	DISPONIBLE	Principe de base de l'apprentissage supervisé (entraînement puis	2-3h	x
				utilisation) à travers une activité ludique		
	7	Interaction humain-robot	septembre 2021	Mêmes principes appliqués à la réalisation de parcours, ou	2-3h	
				chorégraphies, où le robot réagit à des mouvements de la main, et		X
				laissant place à l'imagination des étudiants.		
	8	Algorithme KNN	septembre 2021	Visualisation et application de l'algorithme au programme des K	1h	
				plus proches voisins pour apprendre au robot à éviter les obstacles.		
	9	Programmation KNN	DISPONIBLE	Programmation de l'algorithme (au programme) des K plus proches	2-3h	-
		Fiogrammation Kiviv		voisins en Python et mise en œuvre pour apprendre au robot à	2-311	
				éviter les obstacles.		
	10	Détection d'intrus	septembre 2021	Compréhension fine des réseaux de neurones à travers une activité	2h	<u> </u>
	10			basée sur l'ultra-son du robot.		
	11 Programmation neurone nov		novembre 2021	Programmation en Python de la prise de décision et de	2-3h	
				l'apprentissage d'un unique neurone artificiel.		
	12	TP Reconnaissance de	novembre 2021	comparer différents algorithmes supervisés sur un ou plusieurs	2-3h	
		charactères		mêmes jeux de données		
L L	13	Découverte Apprentissage	DISPONIBLE	Successions de "mini-scénarios" guidés, pour introduire aux	2-3h	<u> </u>
Apprentissage par Renforcement	15	par Renforcement		réseaux de neurones et à l'apprentissge par renforcement :	2 311	
		par Renforcement		- édition manuelle du réseau		
				- apprentissage automatique bloqué/mouvement		X
				- apprentissage évitement d'obstacle avec caméra		
				- apprentissage "football"		
	14	Découverte Apprentissage	DISPONIBLE	Version plus avancée du TP "Découverte Apprentissage par	3h	
		par Renforcement (avancé)		Renforcement" où l'utilisateur découvre les équations en jeu et en		
		par nemorcement (avalice)		manipule les paramètres		
	15	TP Programmation Q-learning	novembre 2021	Programmation du Q-learning et mise en œuvre pour un	2-3h	
				apprentissage automatique bloqué / en mouvement. Manipulation		
				d'un tableau 2D.		
	16	Suivi de ligne	janvier 2022	Programmation de la fonction de récompense que reçoit le robot	3-4h	
		(programmation récompense)		pour réaliser un apprentissage original : suivre une ligne avec la		
		(programmation recompense)		caméra, ou autre chose !		1

Interventions : elementary \rightarrow higher education & events

Cachan




First uses by customers and partners

Metz-Nancy (eLab Schoenbeck)

Help to get started : Exchange server (Discord)

hep/ haute cole pedagogique vaud

submission of a scientific publication by EPFL

frontiers

Demystifying AI and Machine Learning through educational learning scenarios with the AlphAI robot

Guillaume Bonvin^{1,2†}, Stephanie Burton Monney^{1,2†*}, Morgane Chevalier², Thomas Deneux^{3,4}

¹Future Classroom lab, Haute Ecole Pédagogique (HEP) du Canton de Vaud, Lausanne, Switzerland

²Unité d'Enseignement et de Recherche Médias, usages numériques et didactique de l'informatique, Haute Ecole Pédagogique (HEP) du Canton de Vaud, Lausanne, Switzerland

³Paris-Saclay Institute of Neurosciences (NeuroPSI), Gif-sur-Yvette, France

⁴Learning Robots SAS, Gif-sur-Yvette, France

Verbatims from teachers and decision makers

" I am very happy with this robot and its software, which teaches in a very simple manner the concepts of AI. I wish to continue to use it in the coming years."

> Michael Balandier, Professor in Digital Sciences Charleville-Mézières (France)

" Students from the final year of High School discovered **how the robot learns** with the camera, and developed **more advanced activities...**

Let's activate our neurons together!"

Jordan Barbier, e-Lab's coordinator Schoeneck (France)

At the Viva Tech Exhibition in June 2021 in Paris:

Encouragements from

Valérie Pécresse (Head of Ile de France Region)

« The AlphAl solution makes **tangible** the effects of the **coding of a Al** in the context of the development of educational robotics. »

Alain Thillay Direction du Numérique pour l'Education Ministère de l'Education Nationale (France) « I am very sensitive to the quality of the relation that you establish with your clients, who can become de facto excellent ambassadors of AlphAI. »

> Vincent Honorat Teacher in pre-college classes Aix-en-Provence (France)

Antoine Petit (CEO of CNRS -French National Scientific Research Center)