Go Direct Ammonium Sensor Artikelnr 103206

Der Go Direct ionenselektive Ammonium Sensor wird verwendet, um die Konzentration von Ammoniumionen (NH₄⁺) in wässrigen Proben zu messen.

Hinweis: Vernier-Produkte sind für Bildungszwecke konzipiert. Unsere Produkte werden nicht für industrielle, medizinische oder kommerzielle Prozesse entwickelt oder empfohlen, wie z. B. für die Lebenserhaltung, die Diagnose von Patienten, die Kontrolle eines Herstellungsprozesses oder für industrielle Tests jeglicher Art.

Lieferumfang

- Go Direct ionenselektiver Ammonium Sensor(Go Direct ionenselektiver Elektrodenverstärker i.V.m. Go Direct ionenselektiver Ammonium BNC Elektrode)
- 30 mL Flasche High Standard Lösung mit SDS (100 mg/L NH₄⁺ N)
- 30 mL Flasche Low Standard Lösung mit SDS (1 mg/L NH₄⁺ N)
- Elektrodenaufbewahrungsflasche (kurzfristig)
- Micro USB Kabel

Kompatible Software

Klicken Sie auf www.vernier.com/manuals/gdx-nh4 für eine Liste von Software, die mit dem Go Direct Ammonium Sensor kompatibel ist.

Erste Schritte

Unter dem folgenden Link finden Sie plattformspezifische Verbindungsinformationen: www.vernier.com/start/gdx-nh4.

Bluetooth Verbindung

- Installieren Sie Graphical Analysis 4 auf Ihrem Computer, Chromebook™ oder mobilen Endgerät. Unter www.vernier.com/ga4 finden Sie verfügbare Software für das Gerät.
- 2. Laden Sie den Sensor vor dem ersten Gebrauch mindestens 2 h auf.
- 3. Bereiten Sie die Elektrode vor, indem Sie sie in der High-Standard-Lösung für 30 Minuten einweichen.
- 4. Schalten Sie Ihren Sensor ein, indem Sie den Ein- / Ausschalter einmal drücken. Die Bluetooth [®] LED wird rot aufleuchten.
- 5. 4. Starten Sie Graphical Analysis 4.
- 6. Klicken oder tippen Sie auf "Neuer Versuch" und dann auf "Drahtlose Sensoren".
- 7. Klicken oder tippen Sie auf den Go Direct Sensor auf der Liste der erkannten drahtlosen Geräte. Die ID finden Sie in der Nähe des Barcodes auf dem Sensor. Die Bluetooth LED wird grün blinken, wenn der Sensor erfolgreich verbunden wurde.
- 8. Dies ist ein Mehrkanalsensor. Der aktive Kanal ist in der Liste der verbundene Geräte (Sensorkanalliste) aufgeführt. Um Kanäle zu wechseln, aktivieren Sie das Kontrollkästchen neben dem Sensor-Kanal, den Sie aktivieren möchten.
- 9. Klicken oder tippen Sie auf Fertig, um den Datenerfassungsmodus zu starten.
- 10. Für optimale Ergebnisse führen Si e eine Zweipunktkalibrierung mit der Low und High Standard Lösung durch.

USB Verbindung

- Bereiten Sie die Elektrode vor, indem Sie sie in der High-Standard-Lösung für 30 Minuten einweichen.
- Installieren Sie Graphical Analysis 4 auf Ihrem Computer oder Chromebook. Unter www.vernier.com/ga4 finden Sie verfügbare Software für das Gerät.
- 3. Verbinden Sie den Sensor mit dem USB Port.
- 4. Starten Sie Graphical Analysis.
- 5. Dies ist ein Multikanalsensor. Um die Standardeinstellungen zu ändern, gehen Sie zu www.vernier.com/start/gdx-nh4.

6. Für optimale Ergebnisse führen Si e eine Zweipunktkalibrierung mit der Low und High Standard Lösung durch.

Ladevorgang

Schließen Sie den Go Direct Ammonium Sensor für zwei Stunden an das mitgelieferte Micro-USB-Kabel und ein beliebiges USB-Gerät an. Das Verbinden der Go Direct Ammonium BNC-Elektrode mit dem Verstärker während des Ladevorgangs ist optional. Sie können bis zu acht Go Direct Ammonium Sensoren auch mit unserer Go Direct Charging Station, separat erhältlich (Bestellcode: GDX-CRG), aufladen. Eine LED an jedem Go Direct Elektrodenverstärker zeigt den Ladestatus an.

Aufladen	Blaue LED leuchtet, während der
	Sensor an das Ladekabel oder die
	Ladestation angeschlossen ist.
Voll aufgeladen	Die blaue LED erlischt, wenn der
	Ladevorgang abgeschlossen ist.

Stromversorgung

Sensor anschalten	Drücken Sie die Taste einmal. Die
	rote LED-Anzeige blinkt, wenn das
	Gerät eingeschaltet ist.
Energiesparmodus aktivieren	Halten Sie die Taste länger als drei
	Sekunden gedrückt, um in den
	Energiesparmodus zu wechseln. Die
	rote LED-Anzeige hört in diesem
	Modus auf zu blinken.

Verbindung des Sensors

Unter folgendem Link finden Sie aktuelle Verbindungsinformationen: www.vernier.com/start/gdx-nh4.

Bluetooth Verbindung

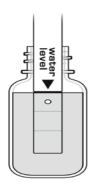
Verbindungsbereitschaft	Rote LED blinkt, wenn der Sensor aktiv und bereit ist, sich über Bluetooth zu verbinden.
Verbunden	Die grüne LED blinkt, wenn der Sensor über Bluetooth verbunden
	ist.

USB Verbindung

OSD VCIDINGUIIS	
Verbunden und aufladend	Blaue und grüne LED leuchtet, wenn
	der Sensor über USB mit GA4
	verbunden ist und das Gerät
	geladen wird. (Die grüne LED ist
	durch die blaue verdeckt.)
Verbunden, voll aufgeladen	Grüne LED leuchtet, wenn der
	Sensor über USB mit GA4
	verbunden und das Gerät
	vollständig geladen ist.
Aufladen über USV, verbunden per	Die blaue LED leuchtet und die
Bluetooth	grüne LED blinkt, aber die grün
	blinkende LED sieht weiß aus, weil
	sie vom blauen Licht überlagert
	wird.

Identifizierung des Sensors

Wenn zwei oder mehr Sensoren angeschlossen sind, können die Sensoren durch tippen oder klicken auf Erkennen in den Sensorinformationen identifiziert werden.


Gebrauchshinweise

- 1. Entfernen Sie die Vorratsflasche von der Elektrode, indem Sie den Deckel abschrauben und die Flasche und den Deckel entfernen.
- 2. Spülen Sie den unteren Teil der Sonde gründlich ab, insbesondere um die kugelgeformte Spitze herum mit destilliertem oder entionisiertem Wasser.
- 3. Tauchen Sie die Spitze der Elektrode für 30 Minuten in die High-Standard-Lösung.

- Die ISE sollte nicht auf dem Boden des Containers ruhen.
- Die kleinen weißen Bezugskontakte nahe der Spitze der Elektrode sollten eingetaucht sein.
- Stellen Sie sicher, das keine Luftblasen unter der ISE eingeschlossen sind.
- 4. Schließen Sie den Sensor gemäß den Hinweisen des Handbuches an.
- 5. Für optimale Ergebnisse führen Si e eine Zweipunktkalibrierung mit der Low und High Standard Lösung durch.
- 6. Wenn Si emit den Messungen fertig sind, spülen Sie die Elektrode mit destilliertem Wasser ab.
- 7. Schieben Sie die Kappe auf den Elektrodenkörper und schrauben Sie die Kappe auf den Speicherflasche, so dass die Spitze der Elektrode in die Aufbewahrungslösung eintaucht.

Wichtig: Tauchen Sie den Sensor nicht vollständig ein. Die BNC-Verbindung ist nicht wasserdicht. Lassen Sie die Elektrode nicht länger als 24 h einweichen.

Hinweis: Wenn die ISE während des Einweichvorgangs transportiert werden muss, verwenden Sie die Kurzzeit-ISE-Einweichflasche. Entfernen Sie die Kappe von der Flasche und füllen Sie sie zu 3/4 voll mit High Standard Lösung. Schieben Sie die Verschlusskappe der Flasche auf die ISE, führen Sie sie in die Flasche ein und verschrauben sie. Für langfristige Lagerung, mehr als 24 Stunden, stellen Sie sicher, dass der Sensor ist in seiner Vorratsflasche mit einem leicht feuchtem Schwamm gelagert wird.

Kanäle

Der Go Direct ionenselektive Ammonium Sensor hat sechs Sensorkanäle. Die Kanal

Namen sind:

- Potenzial (mV)
- Chlorid (mg / L)
- Ammonium (mg / L)
- Kalzium (mg / L)
- Nitrat (mg / L)
- Kalium (mg / L)

Hinweis: Der Ammoniumkanal ist der Standardkanal für diesen Sensor. Alle Kanäle schließen sich gegenseitig aus, außer Potential (d. h. Sie können eine Konzentration und das Potential gleichzeitig anzeigen, aber Sie können nicht zwei Konzentrationskanäle gleichzeitig anzeigen). Um Daten von anderen Konzentrations-Kanälen zu sammeln, müssen Sie auch die entsprechende BNC-Elektrode mit dem Verstärkerverbinden.

Kalibrierung

Vor dem Versand wird auf jedem Sensor eine Kalibrierung gespeichert. Wenn die Membran altert, kann diese Werkskalibrierung unzureichend werden. Für optimale Ergebnisse empfehlen wir, eine Zweipunktkalibrierung durchzuführen.

Hinweis: Wenn Sie beabsichtigen, die Elektrode außerhalb des Standards zu verwenden, die empfohlen werden, müssen Sie Ihre eigenen Standardlösungen vorbereiten und diese zum Einweichen und Kalibrieren verwenden. Die Standards sollten zwei Dekaden auseinander liegen (z. B. 5 mg / I und 500 mg / I).

Weitere Informationen zur Kalibrierung finden Sie unter www.vernier.com/til/4011

Technische Daten

Messbereich	1 bis 18,000 mg/L (oder ppm)
Genauigkeit nach Kalibrierung	±10% des vollen Umfangs (kalibriert 1 bis 100 mg/L)
Interferierende Ionen	K+, Li+, Na+, Cs+, Mg3+, Ca2+, Sr2+, Ba2+
pH Bereich	2 – 7 (keine pH Kompensierung)
Temperaturbereich	0 bis 40 ° C (keine
	Temperaturkompensierung)
Elektrodensteigung	-56 ±4 mV/Decaden bei 25°C
Genauigkeit	± 0.2 pH Einheiten
Standardspannung	High (100 mg/L) 116 mV, Low 0 mV (1 mg/L)
Elektrodenwiderstand	0,1 bis 5 MΩ
Minimale Samplegröße	muss 1.1 in (2,8 cm) eingetaucht sein
USB Typ	2.0
Drahtlos Typ	Bluetooth 4.2
Reichweite	30 m
Batterie	300 mA Li-Poly
Batteriedauer (einmalige Ladung)	~24 Std.
Batteriedauer (langfristig))	~500 Ladevorgänge (mehrere Jahre abhängig vom Gebrauch)

Pflege und Wartung

Richtige Pflege und Lagerung sind wichtig für eine optimale Langlebigkeit Ihres Ammoniumsensors.

 Langzeitlagerung der ISE (länger als 24 Stunden): Befeuchten Sie den Schwamm auf dem Boden der Langzeitflasche mit destilliertem Wasser. Wenn Sie den Sensor nicht mehr benutzen, spülen Sie ihn mit destilliertem Wasser ab und tupfen ihn mit einem trockenen Tuch trocken. Lösen Sie den Deckel der Langzeit-Vorratsflasche und stecken Sie die Elektrode hinein. Hinweis: Die Spitze der ISE sollte

- den Schwamm NICHT berühren. Stellen Sie auch sicher, das sich die weiße Referenzmarkierung innerhalb der Flasche befindet. Schrauben Sie den Deckel fest. Dies wird die Elektrode feucht halten und vor Austrocknung schützen.
- Stellen Sie das Gerät in den Energiesparmodus, indem Sie die Taste mindestens drei Sekunden lang gedrückt halten. Die rote LED hört auf zu blinken, um anzuzeigen, das sich das Gerät im Ruhezustand befindet. Über mehrere Monate wird sich die Batterie entladen, wird aber nicht beschädigt. Laden Sie das Gerät nach einer solchen Lagerung einige Stunden auf und das Gerät ist wieder einsatzbereit.
- Kurzfristige Nasslagerung (weniger als 24 Stunden): Befüllen Sie die Kurzzeit-ISE-Einweich-Flasche zu 3/4 voll mit High Standard Lösung. Lösen Sie die Kappe, führen Sie die Elektrode in die Flasche ein und verschließen Sie sie.

Hinweis: Wenn Sie den Akku Temperaturen über 35 ° C aussetzen, verringert sich die Lebensdauer. Wenn möglich, lagern Sie das Gerät in einem Bereich, der nicht extremen Temperaturschwankungen ausgesetzt ist.

Wartung und Austausch der ISE-Standardkalibrierungslösungen

Genaue Standardlösungen sind für die Durchführung guter Kalibrierungen unerlässlich. Die beiden mitgelieferten Standardlösungen können lange halten, wenn Sie darauf achten, sie nicht zu kontaminieren. Irgendwann werden Sie Ihren Vorrat an Standardlösungen auffüllen müssen. Vernier verkauft Ersatzstandards in 500 ml Einheiten. Bestellcodes sind:

- NH4-LST: Ammonium Low Standard, 1 mg / L
- NH4-HST: Ammonium High Standard, 100 mg / L

Verwenden Sie die Informationen der folgenden Tabelle, um Ihre eigenen Standardlösungen vorzubereiten.

Hinweis: Verwenden Sie Glasgeräte, die für genaue Volumenmessungen ausgelegt sind, z.B. Messkolben oder Messzylinder. Alle Glaswaren müssen sehr sauber sein.

Standardlösung	Konzentration (mg/L oder ppm)	Vorbereitungsmethode mit hochwertigem destilliertem Wasser
Ammonium (NO3–) ISE High Standard	100 mg/L NH₄⁺ als N	0.382 g NH4Cl / 1 L Lösung
Ammonium (NO3 –) ISE Low Standard	1 mg/L NH ₄ ⁺ als N	Verdünnen Sie High Standard Lösung um den Faktor 100

Ersatzmodule

Die Go Direkt Ammonium Ionenselektive Elektrode hat eine PVC-Membran mit einer begrenzten Lebenserwartung. Es wird garantiert, das sie für einen Zeitraum von zwölf (12) Monaten ab Kaufdatum fehlerfrei funktioniert; Es ist jedoch möglich, das Sie länger als die Garantiezeit funktioniert. Wenn Sie eine reduzierte Reaktion bemerken, ist es wahrscheinlich an der Zeit, das Membranmodul zu ersetzen.

Wichtig: Membranmodule nicht weit vor der gewünschten Einsatzzeit bestellen; der Prozess des Abbaus findet statt, auch wenn sie gelagert werden.

Batterieinformationen

Der Go Direct Ammonium Sensor enthält eine kleine Lithium-Ionen-Batterie im Griff. Das System ist so konzipiert, dass es sehr wenig Strom verbraucht und keine hohen Anforderungen an die Batterie stellt. Obwohl die Batterie eine einjährige Garantizeit hat, sollte die erwartete Lebensdauer der Batterie mehrere Jahre betragen. Ersatzbatterien sind bei Vernier erhältlich (Bestellnummer: GDX-BAT-300).

Wasserdichte

Der Go Direct Ammonium Sensor ist nicht wasserfest und sollte niemals im Wasser eingetaucht werden. Wenn Wasser in das Gerät gelangt, schalten Sie das Gerät sofort aus (halten Sie die Taste Power-Taste für mehr als drei Sekunden gedrückt). Trennen Sie den Sensor und das Kabel, entfernen Sie die

Batterie. Lassen Sie das Gerät gründlich trocknen, bevor Sie es erneut verwenden. Versuchen Sie nicht, das Gerät mit einer externen Wärmequelle zu trocknen.

Funktionsweise

Kombinations-Ionenselektive Elektroden bestehen aus einer ionenspezifischen (Abtast-) Halbzelle und einer Referenzhalbzelle. Die ionenspezifische Halbzelle erzeugt ein Potential, das an der Referenzhalbzelle in Abhängigkeit von der Aktivität des Zielions in der gemessenen Probe gemessen wird. Die Ionenaktivität und das Messen des Potentials ändert sich, wenn sich die Zielionenkonzentration der Probe ändert. Die Beziehung zwischen dem mit der ISE gemessenen Potential und der Ionenaktivität und der damit verbundenen Ionenkonzentration in der Probe wird durch die Nernst-Gleichung beschrieben:

FORMEL

E = gemessenes Potential (mV) zwischen der ionenselektiven und der Referenz

Elektrode

Eo = Standardpotential (mV) zwischen der ionenselektiven und der Referenzelektrode

R = Universalgaskonstante (R = 8,314 J mol-1 K-1)

T = Temperatur in K (Kelvin), mit T (K) = 273,15 + t ° C, wobei t die

Temperatur der gemessenen Lösung in ° C ist.

F = Faraday-Konstante (96485 C mol-1)

n = Wertigkeit des Ions

C = Konzentration des zu messenden Ions

Co = Nachweisgrenze

Da R und F konstant sind, werden sie sich nicht ändern. Die elektrische Ladung des

zu messendes Ion (Valenz) ist ebenfalls bekannt. Daher kann diese Gleichung sein

vereinfacht als:

 $E = Eo - S \cdot Log (C + Co)$

Techni Science | T +49 322 11 00 13 18 | www.techniscience.com

wo ist die ideale Steigung der ISE.

Die folgende Tabelle beschreibt das ideale Verhalten:

Ionen Beispiele	n (valence of ion)	S (at 25 °C), mV/decade
Calcium (Ca2+)	+2	+29.58
Potassium (K+), Ammonium (NH4 +)	+1	+59.16
Nitrate (NO3-), Chloride (Cl-)	-1	-59.16

Unter der Annahme, das C_0 nahe Null ist, kann die Gleichung wie folgt umgeschrieben werden:

$$C = 10 [(E - Eo) / S]$$

erlaubt die Berechnung der Ionenkonzentration.

Es ist sehr wichtig zu beachten, das diese Tabelle das ideale Verhalten widerspiegelt. Ionenselektive Elektroden haben Steigungen, die typischerweise niedriger als ideal sind. Es ist in der Regel akzeptiert, das eine ISE-Steigung von 88-101% vom Ideal zulässig ist. Die Steigung (S) ist ein Indikator für die ISE-Leistung. Wenn sich die Steigung im Laufe der Zeit signifikant ändert, ist kann es darauf hinweisen, dass die ISE-Sensorspitze ausgetauscht werden muss.

Potential gegenüber Konzentration

Um die mV-Werte einer wässrigen Probe zu messen, ist die Kalibrierung nicht erforderlich. Um die mV-Werte in die Konzentration (mg / L oder ppm) umzurechnen, verwendet die Software eine modifizierte Version der Nernst-Gleichung:

C = 10 [(E - Eo) / Sm]

C = Konzentration des zu messenden lons (mg / L oder ppm)

E = gemessenes Potential der Probe (mV)

Eo = gemessenes Potential (mV) bei einem C = 1 mg / L NO3

-- N Konzentration

Sm = gemessene Elektrodensteilheit in mV / Dekade

Der Wert von Sm, die gemessene Elektrodensteilheit, wird durch Messen der Potenzial von zwei Standardlösungen und die Lösung der nachstehenden Gleichung:

Sm = - [(niedriger Standard - hoher Standard) / # von Dekaden]

* Eine Dekade ist als der Faktor der Differenz zwischen den beiden Standardlösungen definiert. Zum Beispiel der Unterschied zwischen einem 1 mg / L Standard und einer 100 mg / L-Standard beträgt 2 Dekaden (ein Faktor von 100 Differenz oder 1×10^2).

Beispielkalkulation, Konvertierung mV zu mg/L

In diesem Beispiel sind die gemessenen Größen in der folgenden Tabelle dargestellt:

Lösung	Gemessenes Potential
1 mg/L NH₄⁺ standard	0 mV
100 mg/L NH₄⁺ standard	116 mV
Unbekannte Lösung	88 mV

FORMEL

 $C = 10^{(88 \text{ mV} - 0 \text{ mV})} / 58 \text{ mV/decade} = 33 \text{ mg/L NH}_4^+ - \text{N}$

Fehlerbehebung

Verwenden der Ionic Strength Adjuster (ISA) -Lösung zur Verbesserung der Genauigkeit

Für optimale Ergebnisse bei niedrigen Konzentrationen von Nitrationen ist es eine Standardmethode bei der Messung mit der Nitrat-Ionenselektiven Elektrode (ISE), ISA-Lösungen jeder Ihrer Standardlösungen hinzuzufügen. Das Hinzufügen eine ISA stellt sicher, das die Gesamtionenaktivität in jeder gemessenen Lösung nahezu gleich ist, unabhängig von der spezifischen Ionenkonzentration. Das ist besonders wichtig, wenn sehr niedrige Konzentrationen spezifischer Ionen gemessen werden.

Die ISA enthält keine für die Nitrat-ISE selbst üblichen Ionen. **Hinweis:** Die Mengen an ISA zu Proben oder Standardlösungen, die hinzugegeben werden, müssen keine hohe Genauigkeit haben - die Kombination der ISA-Lösung und der Probenlösung, die Tropfen mit einer wegwerfbaren Beral-Pipette zählt, funktioniert tadellos. Die folgenden Anweisungen sind für die Verwendung von ISA-Lösungen mit Vernier-Ionenselektiven Elektroden.

Techni Science | T +49 322 11 00 13 18 | www.techniscience.com

Verwenden Sie eine ISA mit der Nitrat-ISE, indem Sie 2,0 M (NH4) 2SO4-ISA-Lösung (26,42 g (NH 4) 2 SO 4/100 ml Lösung) zu NO 3- Standardlösung hinzufügen oder zur gemessenen Lösung in einem Verhältnis von 1 Teil ISA (nach Volumen) zu 50 Teilen Lösung insgesamt(z. B. 1 ml ISA zu 50 ml Gesamtlösung oder 2 Tropfen ISA zu 5 ml der Gesamtlösung). Weitere Informationen zur Fehlerbehebung und häufig gestellte Fragen finden Sie unter www.vernier.com/til/665

Reparaturinformationen

Wenn Sie die zugehörigen Produktvideos gesehen haben, die Schritte zur Fehlerbehebung befolgt und immer noch Probleme mit Ihrem Go Direct Ammonium Sensor haben, wenden Sie sich an den technischen Support von Vernier unter support@vernier.com oder rufen Sie die Nummer 888-837-6437 an. Support-Spezialisten arbeiten mit Ihnen zusammen, um festzustellen, ob das Gerät zur Reparatur eingesendet werden muss. Zu diesem Zeitpunkt wird eine Return Merchandise Authorization (RMA) - Nummer ausgestellt und Anweisungen zur Rücksendung des Geräts zur Reparatur mitgeteilt.

Zubehör/Ersatzteile Artikel

Order Code

Flaschen Aufbewahrungslösung 5Stück	BTL
Standard High NO3 ISE Lösung	NH4-HST
Standard Low NO3 ISE Lösung	NH4-LST
Ersatzmembran für Nitratelektrode	NH4-MOD
Go Direct Nitrat Ionen-Selektive	GDX-NH4-BNC
Elektrode BNC	
Go Direct ISE Verstärker	GDX-ISEA
Micro USB Kabel	CB-USB-MICRO
Go Direct™ 300 mAh Ersatzbatterie	GDX-BAT-300
USB-C auf Micro USB Kabel	CB-USB-C-MICRO

Garantie

Vernier garantiert, dass dieses Produkt für die Dauer von fünf Jahren ab dem Datum der Lieferung an den Kunden frei von Material- und Herstellungsfehlern ist. Diese Garantie deckt keine Schäden am Produkt ab, die durch Missbrauch oder unsachgemäßen Gebrauch verursacht werden. Diese Garantie gilt nur für Bildungseinrichtungen.

Entsorgung

Wenn Sie dieses elektronische Produkt entsorgen, behandeln Sie es nicht als Hausmüll. Die Entsorgung unterliegt bestimmten Vorschriften, die sich je nach Land und Region unterscheiden. Dieser Gegenstand sollte einer geeigneten Sammelstelle für das Recycling von Elektro- und Elektronikgeräten übergeben werden. Indem Sie sicherstellen, dass dieses Produkt ordnungsgemäß entsorgt wird, tragen Sie dazu bei, mögliche negative Folgen für die menschliche Gesundheit oder die Umwelt zu vermeiden. Das Recycling von Materialien wird dazu beitragen, natürliche Ressourcen zu schonen. Für detailliertere Informationen zum Recycling dieses Produkts wenden Sie sich an Ihr örtliches Stadtbüro oder Ihren Entsorgungsdienst. Durchbohren Sie den Akku nicht und setzen Sie ihn keiner übermäßigen Hitze oder Flammen aus. Das hier abgebildete Symbol weist darauf hin, dass dieses Produkt nicht in einem normalen Abfallbehälter entsorgt werden darf.

Techni Science | Brüsselerstraße 1A|
D- 49124| Georgsmarienhütte |
T 0049 322 11 00 13 18
www.tecniscience.com/de
info@techniscience.com | www.techniscience.com

Rev. 6/15/17 Go Direct, Graphical Analysis und andere abgebildete Marken sind unsere Marken oder eingetragene Marken in den Vereinigten Staaten. iPad ist eine Marke von Apple Inc., registriert in den USA und anderen Ländern. Alle anderen Marken, die nicht unser Eigentum sind, sind Eigentum ihrer jeweiligen Inhaber, die mit uns verbunden sind, oder gesponsert sein können.